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Abstract
A direct method for the retrieval of electron density maps from surface x-ray diffraction data is
presented and its performance is evaluated. The method, DCAF (difference map using the
constraints of atomicity and film shift), is based on the difference map iteration scheme and
uses, apart from the traditional constraints of atomicity, positivity and film thickness, a novel
constraint, which we have named the ‘film shift’, whereby the real space solution is shifted up
by an out-of-plane unit cell size of the underlying bulk substrate material if the topmost region
of the same thickness contains insignificant electron density. This relaxes the film thickness
constraint, which is necessarily loose in order to accommodate structural uncertainties at the
film–substrate interface due to intermixing, roughness, and heteroepitaxial strain.

DCAF’s performance was evaluated by retrieval of the electron density distribution from a
real data set, recorded from a five-monolayer film of LaAlO3 on SrTiO3, which resulted in an
electron density in good agreement with the previously solved structure. Importantly, the
stability and reproducibility of the final solution compares favorably with constraint
combinations in which the film shift projection is omitted, highlighting the power of this new
method. In addition, an example of a full structural solution for a three-monolayer-thick film of
La1−x Srx MnO3 on SrTiO3 is presented, where DCAF electron density retrieval followed by
model building and refinement was conducted.

It will be shown that DCAF can be successfully applied to thin films for retrieving
physically meaningful electron densities, and that it can also serve as a starting point for
subsequent structure refinement.

1. Introduction

Surface x-ray diffraction (SXRD) is uniquely capable of
providing the precise atomic arrangement at surfaces of single
crystals and at thin film interfaces [1]. Structural information
is of especially high importance in modern condensed matter
physics, such as in strongly correlated materials, where subtle
movements of atoms can have a fundamental effect on the
material’s physical properties. For increasingly complex
systems, ordinary model fitting approaches become more
difficult, if not essentially impossible, due to the large number
of free parameters to be refined.

An ideal way to analyze an x-ray diffraction pattern would
be to take its inverse Fourier transform to yield the three-
dimensional electron density. This is not possible because of
the phase problem, which is due to the fact that the measured
intensities only contain information about the magnitude of the
scattered wave and not the phase. However, the information

loss caused by the missing phase can be compensated by
iterative optimization methods which force the electron density
to agree with the measured data as well as a priori information.
These methods are called phase retrieval methods or direct
methods. In bulk crystallography, the a priori information
included in these methods are usually that the electron density
should be positive and atomic-like [2].

In contrast to bulk x-ray diffraction, SXRD aims at
determining the structure of a single crystalline surface or
film, which is periodic in the two in-plane directions and
aperiodic in the out-of-plane direction. This aperiodicity gives
rise to continuous streaks of intensity in the out-of-plane
direction, called diffraction rods. Since the diffraction rods are
continuous, they can be sampled more finely than the lowest
sampling frequency necessary to get a real space volume with
the same extension as that for the assumed out-of-plane size
of the unknown surface structure, which is equivalent to the
Nyquist frequency. This makes it possible to get a real space
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volume larger than the unknown surface structure in the out-
of-plane dimension. Consequently, there exists a region in
real space where the inverted electron density can be assumed
to be zero. This procedure is called oversampling and is
an indispensable part of optical phase retrieval methods [3].
The region where the unknown part of the electron density is
considered to be non-zero is denoted as the support.

The first articles on direct methods for SXRD were
published by Marks an co-workers [4–7] at the end of the
1990s. Their method is quite elaborate, using a combination
of phase retrieval techniques and a genetic algorithm to
explore multiple solutions. Later work by Saldin and co-
workers [8–10] showed that it is possible to use a rather simple
and transparent phase retrieval scheme, namely the error-
reduction algorithm suggested by Fienup [11, 12], combined
with the knowledge that the electron density is a positive
quantity which differs from the bulk in a small region
close the surface. This method, called PARADIGM, has
solved the surface structure of Au(110)-(2 × 1) [13] and
two reconstructions in the Sb/Au(110) system [14, 15]. The
starting point of the above mentioned methods consists of a
random initialization of the phases or the electron density,
rendering it possible to check for the existence of multiple
solutions. At about the same time as Saldin and co-workers
formulated PARADIGM, Yacoby and co-workers developed
the coherent Bragg rod analysis (COBRA) [16–18]. This
method also uses positivity and knowledge about the film
thickness. However, it differs in the Fourier space projections,
as it uses the assumption that the phase of the unknown part,
the thin film, should vary more slowly than the phase of the
bulk contribution. Also, in contrast to Marks’s and Saldin’s
methods, COBRA is initialized with a starting model for the
unknown structure.

Recently, there have been significant advances in the
understanding and performance of direct methods [3, 19–26].
These new techniques have some common features that
make them very effective. The first is the use of hybrid
input–output [12] or similar algorithms, e.g., the difference
map [22, 23], that have a low probability to get trapped in local
minima. Secondly, most of the direct methods use a dynamical
support where the region that contains the object is modified in
some manner during the phase retrieval process.

The aim of this work has been to develop a direct method
for SXRD that can, with a random initialization of the phases
of the complex structure factors, retrieve the correct phases
and thereby produce consistent maps of the electron density of
thin films with sub-atomic resolution. We use the difference
map iteration scheme in combination with atomicity and a
new type of dynamical support, named the film shift. Our
method is hereafter referred to as DCAF (difference map using
the constraints of atomicity and film shift). The following
sections explain DCAF in detail and explore its effectiveness
compared to other constraint combinations in retrieving the
electron densities from real data acquired with SXRD from thin
film samples.

2. Direct method formulation

2.1. Background

The signal collected in SXRD experiments contains contribu-
tions from the bulk of the sample as well as from the thin film
or surface structure under investigation. The former is usually
known and the structure factors Fbulk from the truncated bulk
can be calculated. The total structure factor can then be ex-
pressed in terms of the unknown surface structure, having an
electron density ρ,

Ftot(ρ) = Fsurf + Fbulk = FT[ρ] + Fbulk, (1)

where FT denotes the Fourier transform. The quantity ρ is
non-zero only in a finite region given by the thickness of the
unknown surface structure. It is this finiteness in the out-
of-plane direction which allows for the oversampling of the
corresponding diffraction signal which aids us to solve the
structure. In the remainder of this section we will present
DCAF in detail, which can be employed to retrieve the electron
density, ρ.

2.2. Projections

A central concept in direct methods is that of constraints, which
describe an a priori property of the system to be fulfilled by a
solution. In x-ray diffraction, the system is described by an
electron density. The set of those electron densities compatible
with a given constraint forms a subset of the entire search space
of possible electron densities. Mathematically, the application
of a constraint can be formulated in terms of a projection
operator [3], which assigns to a given point in the search space
the nearest point of the corresponding constraint subset.

Direct method algorithms use a combination of these
projection operators (henceforth referred to as projections) to
find points of the search space which satisfy all corresponding
constraints simultaneously. In other words, the intersection
of all constraints forms the solution subset. Depending on
the particular choice of constraints and their overlap, the
solution subset may contain exactly one solution, several
(multiple) solutions, or no solutions at all. It is therefore
the applicability and effectiveness of the employed projections
which determine the success of the direct method in solving
a particular problem. In the following, the specific real space
and Fourier space projections used in this work are discussed
in detail.

2.2.1. Fourier space. For an electron density to be
a valid solution, the most important constraint is that its
Fourier transform agrees with the measured structure factor
magnitudes. Due to the phase problem, the respective phases
cannot be constrained and are thus left unchanged. The
magnitude projection is written as

PM(ρ) = IFT

[
|Fmeas| · Ftot(ρ)

|Ftot(ρ)| − Fbulk

]
, (2)

where the bulk contribution has been subtracted such that only
the structure factors of the unknown part remain. This step has
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Figure 1. An illustration of the real space projection steps. (a) The
starting electron density distribution. The area beneath the two atoms
found is highlighted. The result of the atomicity and positivity
projection is shown in (b). The electron density after the application
of the film shifting projection is shown in (c).

(This figure is in colour only in the electronic version)

one important consequence, however: the value of |Fmeas| must
be known on an absolute scale, given by the definition of Fbulk.

The magnitude projection implicitly applies a second
constraint on the electron density. Since the diffraction
pattern is assumed to be centrosymmetric (in SXRD, only
diffraction signals above the surface can be measured), its
Fourier transform results in a real-valued electron density, even
though the structure factors are complex numbers.

Finally, one problem is how to treat missing data points in
the diffraction pattern since the corresponding structure factors
cannot be constrained directly. The approach used in this work
is to leave those calculated structure factors unchanged.

2.2.2. Real space. The real space projection uses the
following a priori information: the electron density is positive;
the unknown part has a certain maximal extension in the out-
of-plane direction; the unknown part is made up of atoms and
the substrate structure is known. The positivity projection, Pp,
can be written as

Ppρ =
{

ρ, ρ � 0

0, ρ < 0.
(3)

The second and third points are included in a projection
which we denote as the atomicity projection. The procedure
for identifying atoms is based on that of Elser [22], the main
difference here being that this work uses a threshold level
for identifying atoms, whereas Elser used a fixed number of
atoms. The different steps of the real space projection can be
followed in figures 1(a) and (b). First, only a certain region,
given by the maximal thickness of the unknown part, is used
for the identification of atoms, the range denoted as ‘Surface’
in figure 1(a). The voxels in this 3D volume are then ranked
according to their electron density. This is exemplified in
figure 1(a) by the indices shown above the bars. Note that only
the bars above the threshold are assigned an index. The first

atom to be placed is centered around the voxel with the highest
electron density, and, according to atomicity constraint, is also
assigned an extent of va voxels (in the 1D example above,
va = 3). Successively working down the ranking list, it is then
checked that placing a new atom at the indexed position will
not cause any overlapping with previously placed atoms. If the
position is free, a new atom is placed there. The search for
atoms finishes when the current value in the ranking list drops
below the threshold level. In our example, the first atom is
placed at the position marked with 1. The voxel marked with 2
has the second highest ranking, but is rejected because it would
result in an overlap with the first atom. The next available
position is marked with 3. All the remaining rankings would
either cause an overlap with an existing atom or lie below the
threshold, marked by the dashed line in figure 1(a). The last
step of the projection sets the values in all voxels outside any
atoms to zero. The result can be seen in figure 1(b) where the
positivity projection has also been applied.

Due to the geometry of the sample, a thin film on top of
a semi-infinite substrate, there is always an ambiguity as to
where the film, the unknown, meets the substrate. Shifting
the boundary between the bulk and unknown surface region by
exactly one unit cell results in an identical overall structure,
but changes the contents of the unknown electron density,
producing two equally valid solutions. Our film shift projection
forces a maximum filling of the entire unknown part. Thus,
once the atomicity projection has been performed, it is checked
whether the distance between the top atom and the upper
boundary of the unknown region is larger than a bulk unit cell.
If this is the case, the entire structure is shifted up, as shown by
the arrows in figure 1(b), resulting in a maximum filling with
atoms, figure 1(c).

2.3. The difference map

With these projections at hand, we now need an iterative
algorithm which will perform the search for a solution. Elser
and co-workers have developed a generalized hybrid input–
output type algorithm which avoids getting trapped in local
minima on its search for a global solution [23]. This so-called
difference map algorithm can be written as [21–23]

ρi+1 = ρi + β [T1(ρi) − T2(ρi)]

T1(ρi ) = PR
[
(1 + β−1)PF − β−1

]
(ρi )

T2(ρi ) = PF
[
(1 − β−1)PR + β−1

]
(ρi ),

(4)

where β is a control parameter in the interval (0, 1]. Studies
have indicated that the optimal value for β should be in the
range 0.4 � β � 0.8 [23]. Our own tests show no clear
correlations between the number of iterations and β . Other
studies [20] have seen similar behavior. All the experiments
here have used β = 1, which simplifies the difference map to

ρi+1 = ρi + 2PRPFρi − PRρi − PFρi . (5)

To monitor the progress of the algorithm, we use the difference
map error [22], defined as

εDM,i+1 = ‖T1(ρi ) − T2(ρi )‖ . (6)
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The difference map, equation (4), needs a starting point
for the electron density, ρ0. Choosing a random starting point
renders it possible to verify the uniqueness of the solution by
repeating the search several times. Here, we assign random
phases to the measured structure factor amplitudes.

ρ0 = IFT
[|Fmeas| erand(0, 2π)i

]
. (7)

2.4. Technical details

The atomicity projection is most efficient if the size of the
atomic ‘bins’ is as small as possible. However, the electron
cloud of an atom has a certain extension and shape given by
the inverse Fourier transform of the atomic form factor, f .
Additional broadening arises from thermal motion. In order
to optimize the effectiveness of the atomic support, the mean
shape of the atoms, given by the assumed composition of
the unknown region, can be deconvoluted from the electron
density. This is done by forming unitary structure factors,
U [27].

|U | = F∑
j f j

(8)

where the denominator is the sum over all atoms in the
unknown part. In the two cases shown here, unitary structure
factors improve the lowest achievable difference map error but
do not affect the final solution.

Due to the finite sampling volume in Fourier space, the
structure factors are truncated at a certain position. This
truncation causes spectral leakage, ringing, in the electron
density. To avoid this, a window function, W (|Q|), is
multiplied with the measured data. In this work a Gaussian
window function, width σw, is used since this will lead to the
same atomic shape as the Debye–Waller factor. The value
of σw is optimized by having it as low (which gives broader
atoms) as the chosen atomic support allows. In other words
the total number of electrons within the atomic support for a
hypothetical mean atom is maximized with regard to σw.

3. Application and evaluation

An experimental data set of LaAlO3 (LAO) on SrTiO3 (STO)
data has been used to evaluate DCAF’s ability to reconstruct
the electron density. Data for La1−xSrx MnO3 (LSMO) grown
on STO serve to illustrate a complete refinement process.

3.1. Details of measurements

Details of sample fabrication for the five-monolayer (ML) film
of LAO on STO and the 3 ML film of LSMO on STO can
be found in [28, 29]. Both samples were measured at the
Material Science beamline, Swiss Light Source, Paul Scherrer
Institut, Switzerland. The range in reciprocal space used for
the subsequent analysis here was h, k = 0, . . . , 4 and 0.3 �
l � 4.5 r.l.u. with a sampling interval of 0.025 r.l.u. for the
LAO film, and h, k = 0, . . . , 3 and 0.25 � l � 3.5 r.l.u.
with a sampling interval of 0.05 r.l.u. for the LSMO film.
This implies that the vertical extent of one voxel corresponds
to 1.30 Å and 1.67 Å for the LAO data and the LSMO data,

Figure 2. (a), (b) A comparison between the refined model [28]
(lines) and the retrieved electron density (circles). A line scan
through the electron density in the out-of-plane direction for the
center of the La/Sr atoms (a) and the Mn/Ti atoms (b) is displayed.
(c) The evolution of the difference map error as a function of the
number of iterations.

respectively. The reciprocal lattice is defined by the cubic STO
substrate, which has a bulk lattice parameter of a = 3.9045 Å
(2π/a = 1.6092 Å

−1
).

3.2. Evaluation: LAO on STO

The data from LAO on STO was scaled using the already
determined structure [28] including the corresponding scale
factor. The result of a typical DCAF run is shown in figure 2.
The upper two panels show the retrieved electron density
(circles) as a function of out-of-plane position for two different
in-plane positions corresponding to the sites for Sr/La, (a), and
Ti/Al, (b). The error bars display the standard deviation of the
10 electron densities with the lowest difference map error, for
a DCAF run of 6000 iterations. The parameters for DCAF
are displayed in table 1. An unknown region of two STO
unit cells thicker than the expected thickness of the film was
chosen. The agreement between the electron density calculated
from the refined parameters in [28] (full line) and the retrieved
ones is good. Note that all the oxygen atoms are seen for the
Ti/Al curve. The lower panel displays the difference map error,
equation (6), as a function of the number of iterations. The
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Figure 3. As-retrieved electron density distributions for the Sr/La sites (a)–(d) and the Ti/Al sites (e)–(h). Panels (a) and (e) show the use of
positivity and support, (b) and (f) including atomicity with a fixed number of atoms, (c) and (g) atomicity with thresholding and (d) and (h)
atomicity with thresholding and film shift. Each panel shows five different retrieval runs.

Table 1. The control parameters used by the direct method for the
two different samples. The first two columns denote the thickness of
the unknown region in voxels and in STO unit cells, respectively.
Column ‘Thresh.’ gives the minimum allowed value, given as a
percentage of the maximum value of the electron density, for the
center value of an atom. σw is the width of the window function.

Unknown region

Sample voxels STO UC Thresh. (%) σw (r.l.u.)
At. size
voxels

LAO 62 6.8 5 3.0 3 × 3 × 3
LSMO 36 5.1 10 2.8 3 × 3 × 3

fluctuations (above 3000 iterations) in the difference map error
show that the algorithm is still searching. Thus, the problem
formulation is probably slightly over-constrained, i.e., there is
no intersection of the different constraint sets.

A comparison between four different constraint combi-
nations can be seen in figure 3. The following combinations
were used: positivity and a fixed thickness of the unknown re-
gion; atomicity with a fixed number of atoms; atomicity with a
threshold; film shifting and atomicity with a threshold (DCAF).
The first combination is similar to the direct method proposed
by Saldin and co-workers [8, 9], with the exception that the
difference map was used instead of the error-reduction algo-
rithm [12]. The second implementation is an adaptation of the
direct method proposed by Elser [22] to SXRD. The third com-
bination, atomicity with a threshold (here 5% of the maximum
electron density), is the first part of the real space constraint
in DCAF, described in section 2.2.2. Each method was exe-
cuted for 6000 iterations in five consecutive runs with random
initialization.

As seen in figure 3, the quality and reproducibility of the
fourth method, DCAF, is superior to the other three. The

least effective combination is the first, with only positivity
constraint and fixed thickness of the unknown region. More
detailed tests showed that the performance of the first method
can be slightly improved by choosing a very tight support. In
the other three methods, the inclusion of more information,
i.e. atomicity, is able to compensate for the loose support
constraint. Introducing the film shift projection creates a
stable solution with a more detailed structure, as seen from the
resolved oxygen atoms between the Ti/Al atoms in figure 3(h).

3.3. Application: LSMO on STO

The data from LSMO did not extend as far out in reciprocal
space as the LAO data. Consequently, the atomicity support
was not as effective for this data set, as the size of the atomic
‘bins’ was larger than those for the LAO data. The intensity
was normalized to an absolute scale, exploiting the fact that
the reflectivity is equal to unity below the critical angle. The
configurable parameters of DCAF are shown in table 1. Results
from a typical retrieval run can be seen in figure 4, showing
two electron density voxel columns, corresponding to the La/Sr
and Mn/Ti positions. The oxygen atoms lie below the 10%
threshold level, since the electron density peak of the oxygen
atoms is shared between four voxels, and consequently they are
missing in the final electron density. Multiple restarts of DCAF
showed that the retrieved electron densities are reproducible
with random initializations. Attempts to retrieve the electron
density with lower threshold values (thereby capturing the
oxygen positions) yielded unstable solutions.

The data shown in figure 4 were parametrized by adding
atoms at suitable positions, while their composition and
Debye–Waller factors were adjusted to give a visual agreement
with the retrieved electron density. The result is seen as the

5



J. Phys.: Condens. Matter 20 (2008) 445006 M Björck et al

Figure 4. The retrieved electron density for the LSMO. The circles
and squares show the retrieved electron density for the in-plane La/Sr
positions and Mn/Ti positions, respectively, as a function of
out-of-plane position. The lines show the initial model of the film
obtained from this electron density.

Figure 5. Four examples of the fitted diffraction rods from the
LSMO film. Full lines denote the final model and the circles the
measured data points.

full and dashed lines in figure 4. The oxygen atoms were
included at the bulk positions, despite the fact that there were
no oxygen atoms in the retrieved electron density, in order to
model complete LSMO unit cells. Evaluating the R factor [30]
for this model yielded a value of 14.6%. The final refinement
was done with GenX [31], resulting in an R factor of 7.5%.
The best fit together with the data is shown in figure 5 for four
arbitrarily chosen diffraction rods. The displacement, �z, of
the atoms from the STO bulk position is shown in the upper
panel of figure 6. The lower panel shows the occupancy of
La and Mn. Figure 6 also includes values from a previous

Figure 6. Comparison between the refinement presented here
(circles) and previous work [29] (squares). Filled symbols denote
Sr/La sites and unfilled Ti/Mn sites. The upper panel shows the
displacement from the STO bulk position and the lower the
site-dependent occupancy for La and Mn, respectively.

study by Herger and co-workers [29]. The two refinements
show a good agreement except at the last layer, where the
previous structural solution has an atom at the Mn sites which
was not found here. The difference between the present and the
previous refinement [29] is most probably due to the imposed
consistency between several data sets in the latter. This is also
supported with the higher R-factor of 8.2% found previously.

4. Conclusions

DCAF has been applied to data from two different systems: 5
ML of LAO on STO and 3 ML of LSMO on STO. The LAO
was used to evaluate the performance of DCAF—the retrieved
electron density was compared to independent structural
refinements with good quantitative agreement. The advantage
of using the film shift projection was shown in comparison with
three other projection combinations, incorporating different a
priori information. Of all the tested projection schemes, only
DCAF (implementing atomicity and the film shift projection)
gave the necessary detailed and reproducible results.

LSMO was used as an example of how a full structural
analysis can be carried out. Starting with a direct method run
to retrieve the electron density, a model of the system could be
built. This starting model was subsequently refined. The final
result showed good agreement with previous refinements [29].

In summary, it has been shown that DCAF can
successfully retrieve accurate and reliable electron densities
from thin films. In addition, the retrieved electron densities
have been used as a starting point to successfully build and
refine atomistic models. In the future, DCAF could very well
prove to be a valuable tool for on-line analysis of SXRD data
as well as providing an unbiased, objective, starting point for
further, more detailed, refinements.
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